
 

 

1.2.1 Considering human/machine interaction 

Practical guidance – automotive 
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In Level 3 of autonomy (i.e. conditionally automated driving), as defined by the Society of 
Automotive Engineers (SAE international [1]), the driver does not need to continuously 
monitor the driving environment. Nevertheless, due to current technology limitations and 
legal restrictions, automated vehicles (AVs) may still need to hand over the control back to 
drivers occasionally (e.g. under challenging driving conditions beyond the automated 
system's capabilities) [2]. 

In such cases, AVs would initiate takeover requests (TORs) and alert drivers via auditory, 
visual, or vibrotactile modalities [3, 4, 5] so that the drivers can resume manual driving in a 
timely manner. However, there are challenges in making drivers safely take over control. 
Drivers may need a longer time to shift their attention back to driving in some situations, 
such as when they have been involved in non-driving related tasks (NDRTs) for a prolonged 
time [6] or when they are stressed or tired [7]. 

Even if TORs are initiated with enough time for a driver to react, it does not guarantee that 
the driver will safely take over [8]. Besides, frequent alarms could startle and increase driver 
stress levels leading to detrimental user experience in AVs [9, 10, 11]. These challenges 
denote the need for AVs to constantly monitor and predict driver behaviour and adapt the 
systems accordingly to ensure a safe takeover.  

The vast majority of prior work on driver takeover behaviour has focused on the empirical 
analysis of high-level relationships between the factors influencing takeover time and 
quality (e.g. [12, 13, 14]).  More recently, the prediction of driver takeover behaviour using 
machine learning approaches has been drawing increasing attention. However, only a few 
studies have focused on the prediction of either takeover time [15, 16] or takeover quality 
[17, 18]; and their obtained accuracy results (ranging from 61% to 79%) are insufficient for 
the practical implementation of real-world applications. This is partly due to the fact that 
takeover prediction involves a wide variety of factors (e.g. drivers' cognitive and physical 
states, vehicle states, and the contextual environment) that could influence drivers' 
takeover behaviour.  

To address the aforementioned challenges, we propose the DeepTake framework by 
providing reliable predictions of multiple aspects of takeover behaviour: 

1. takeover intention - whether the driver would respond to a TOR; 

2. takeover time - how long it takes for the driver to resume manual driving after a TOR; 

3. takeover quality - the quality of driver intervention after resuming manual control. 
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Impacts on future of AVs  

The intersection between ubiquitous computing, sensing and emerging technologies offers 
promising avenues for the DeepTake framework to integrate modalities into a novel human-
centred framework to increase the robustness of drivers’ takeover behaviour prediction. 
DeepTake is a unified framework for the prediction of driver takeover behaviour in three 
aspects (see Figure 1). We envision that DeepTake can be integrated into future AVs, such 
that the automated systems can make optimal decisions based on the predicted driver 
takeover behaviour. For example, if the predicted takeover time exceeds the duration that 
the vehicle can detect situations requiring TORs, or the predicted takeover quality is too low 
to respond to TORs, the automated systems can warn the driver to engage less with the 
NDRT. 

Activities  

Figure 1 illustrates an overview of DeepTake framework. We first collected multimodal data 
such as driver biometrics, pre-driving survey, types of engagement in NDRTs, and vehicle 
data. The multitude of sensing modalities and data streams offers various and 
complementary means to collect data that will help to obtain a more accurate and robust 
prediction of drivers’ takeover behaviour. Second, the collected multimodal data are pre-
processed followed by segmentation and feature extraction. The extracted features are 
then labelled based on the belonging takeover behaviour class. In our framework, we define 
each aspect of takeover behaviour as a classification problem (i.e. takeover intention as a 
binary class whereas takeover time and quality as three multi-classes). Finally, we built 
DNN-based predictive models for each aspect of takeover behaviour. DeepTake takeover 
predictions can potentially enable the vehicle autonomy to adjust the timely initiation of 
TORs to match drivers’ needs and ultimately improve safety. 

 

 

Figure 1 - DeepTake uses data from multiple sources (pre-driving survey, vehicle data, NDRTs information, and 
driver biometrics) and feeds the pre-processed extracted features into deep neural network models for the 
prediction of takeover intention, time and quality. 

Below, we discuss each aforementioned step used in developing DeepTake framework.  

1. Data collection: we collect multimodal data such as driver biometrics, pre-driving 
surveys, types of engagement in NDRTs, and vehicle data. Collecting multimodal data 
copes with the main drawback and inability to provide the underlying complicated state 
of the driver. As driving is a dynamic task and could be impacted by internal and external 
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factors, multiple physiological data streams were used. However, DeepTake can be 
adjusted to fit the data entry.  

2. Pre-processing: the collected multimodal data are pre-processed followed by 
segmentation and feature extraction. Due to sensitiveness of physiological wearables, 
intensive pre-processing should be applied to remove motion artifacts and extract 
meaningful information. The extracted features are then labelled based on the belonging 
to takeover behaviour class.  

3. Labelling: DeepTake tends to cover multiple aspects of takeover behaviour to provide 
more reliable outcomes. We define each aspect of takeover behaviour as a multi-class 
classification problem (i.e. takeover intention as a binary class whereas takeover time 
and quality as three multi-classes). Thus, we labelled takeover time as the period from 
the moment the takeover request alarm is triggered to the moment a participant initiates 
regaining control by pressing the two embedded buttons on the steering. This period 
defines the takeover time for each participant which categorised as Low, Medium, and 
High. In addition, we consider a motivating scenario where the driver needs to take over 
control of the vehicle and swerve away from an obstacle blocking the same lane; 
meanwhile, the vehicle should not deviate too much from the current lane, risking 
crashing into nearby traffic. Thus, takeover quality (𝑃) was labelled as the lateral 
deviation from the current lane.  we label the feature vectors into three classes of 
takeover quality: “low” or staying in a lane when 𝑃<3.5𝑚, “medium” or manoeuvre the 
obstacle but too much deviations when 7𝑚 < 𝑃 ≤ 10𝑚, or “high” or manoeuvre safely 
and one lane deviates when 3.5 ≤ 𝑃 ≤ 7𝑚. 

4. Modeling: DeepTake utilises a feed-forward deep neural network (DNN) with a mini-
batch stochastic gradient descent. The DNN model architecture begins with an input 
layer to match the input features, and each layer receives the input values from the prior 
layer and outputs to the next one. Although we used three classes of takeover time and 
quality, the output layer of DNN model can be customised for the multi-class 
classification. In fact, we also demonstrated the capability of DeepTake in predicting 5-
class takeover time. We evaluate the DNN-model performance against multiple state-of-
art models.  

5. Evaluation metrics: There are a number of potential methods to address reliability of the 
models. Each of these methods shows a different aspect of the model. We evaluate the 
performance of DeepTake framework by multiple metrics. Applying different metrics 
reflect the goodness of the proposed model in different aspects. We first apply 10-fold 
cross-validation on training data to evaluate the performance of selected features in the 
prediction of driver takeover intention, time and quality. We then compared the 
proposed model against 6 other models using Receiver Operating Characteristic (ROC), 
and weighted F1 scores. We finally use the confusion matrix to further illustrate the 
summary of DeepTake’s performance on the distinction of takeover intention, time, and 
quality per class. 

 

Methodology 

Driving scenarios: An experiment was conducted to identify the link between the captured 
data and takeover behaviour. The driving scenarios comprised a four-lane rural highway, 
with various trees and houses placed alongside the roadway. We designed five 
representative situations where the AVs may need to prompt a TOR to the driver, including 
novel and unfamiliar incidents that appear on the same lane. Figure 2 displays an example 
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of a takeover situation used in our study. The designed unplanned takeovers let participants 
react more naturally to what they would normally do in AVs, participants' reaction times are 
in detectable categories. In other words, participants have no previous knowledge of 
incident appearance, which might happen among other incidents requiring situational 
awareness and decision-making.  
 

 
Figure 2 - An example of a takeover situation used in the study 

Means to address takeover readiness: We believe that our human-centred DeepTake 
framework makes a step towards enabling a longer interaction with NDRTs for automated 
driving. DeepTake provides a new approach to help the monitoring systems to constantly 
observe and predict the driver's mental and physical status by which the automated system 
can make optimal decisions and improve the safety and user experience in AVs. Specifically, 
by integrating the DeepTake framework into the monitoring systems of AVs, the automated 
system infers when the driver has the intention to takeover through multiple sensor 
streams. Once the system confirms a strong possibility of takeover intention, it can adapt its 
driving behaviour to match the driver's needs for acceptable and safe takeover time and 
quality. Therefore, a receiver of TOR can be ascertained as having the capability to take over 
properly, otherwise, the system would have allowed the continued engagement in NDRT or 
warned about it. Thus, integration of DeepTake into the future design of AVs facilitates the 
human and system interaction to be more natural, efficient and safe. Since DeepTake 
should be used in safety-critical applications, we further validated it to ensure that it meets 
important safety requirements.  

The DeepTake framework provides a promising new direction for modelling driver takeover 
behaviour to lessen the effect of the general and fixed design of TORs which generally 
considers homogeneous takeover time for all drivers. This is grounded in the design of 
higher user acceptance of AVs and dynamic feedback. The information obtained by 
DeepTake can be conveyed to passengers as well as other vehicles letting their movement 
decisions have a higher degree of situational awareness. 
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