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In Level 3 of autonomy (i.e. conditionally automated driving), as defined by the Society of
Automotive Engineers (SAE international [1]), the driver does not need to continuously
monitor the driving environment. Nevertheless, due to current technology limitations and
legal restrictions, automated vehicles (AVs) may still need to hand over the control back to
drivers occasionally (e.g. under challenging driving conditions beyond the automated
system's capabilities) [2].

In such cases, AVs would initiate takeover requests (TORs) and alert drivers via auditory,
visual, or vibrotactile modalities [3, 4, 5] so that the drivers can resume manual driving in a
timely manner. However, there are challenges in making drivers safely take over control.
Drivers may need a longer time to shift their attention back to driving in some situations,
such as when they have been involved in non-driving related tasks (NDRTSs) for a prolonged
time [6] or when they are stressed or tired [7].

Even if TORs are initiated with enough time for a driver to react, it does not guarantee that
the driver will safely take over [8]. Besides, frequent alarms could startle and increase driver
stress levels leading to detrimental user experience in AVs [9, 10, 11]. These challenges
denote the need for AVs to constantly monitor and predict driver behaviour and adapt the
systems accordingly to ensure a safe takeover.

The vast majority of prior work on driver takeover behaviour has focused on the empirical
analysis of high-level relationships between the factors influencing takeover time and
quality (e.g. [12, 13, 14]). More recently, the prediction of driver takeover behaviour using
machine learning approaches has been drawing increasing attention. However, only a few
studies have focused on the prediction of either takeover time [15, 16] or takeover quality
[17, 18]; and their obtained accuracy results (ranging from 61% to 79%) are insufficient for
the practical implementation of real-world applications. This is partly due to the fact that
takeover prediction involves a wide variety of factors (e.g. drivers' cognitive and physical
states, vehicle states, and the contextual environment) that could influence drivers'
takeover behaviour.

To address the aforementioned challenges, we propose the DeepTake framework by
providing reliable predictions of multiple aspects of takeover behaviour:

1. takeover intention - whether the driver would respond to a TOR;
2. takeover time - how long it takes for the driver to resume manual driving after a TOR;
3. takeover quality - the quality of driver intervention after resuming manual control.



Impacts on future of AVs

The intersection between ubiquitous computing, sensing and emerging technologies offers
promising avenues for the DeepTake framework to integrate modalities into a novel human-
centred framework to increase the robustness of drivers’ takeover behaviour prediction.
DeepTake is a unified framework for the prediction of driver takeover behaviour in three
aspects (see Figure 1). We envision that DeepTake can be integrated into future AVs, such
that the automated systems can make optimal decisions based on the predicted driver
takeover behaviour. For example, if the predicted takeover time exceeds the duration that
the vehicle can detect situations requiring TORs, or the predicted takeover quality is too low
to respond to TORs, the automated systems can warn the driver to engage less with the
NDRT.

Activities

Figure 1 illustrates an overview of DeepTake framework. We first collected multimodal data
such as driver biometrics, pre-driving survey, types of engagement in NDRTSs, and vehicle
data. The multitude of sensing modalities and data streams offers various and
complementary means to collect data that will help to obtain a more accurate and robust
prediction of drivers’ takeover behaviour. Second, the collected multimodal data are pre-
processed followed by segmentation and feature extraction. The extracted features are
then labelled based on the belonging takeover behaviour class. In our framework, we define
each aspect of takeover behaviour as a classification problem (i.e. takeover intention as a
binary class whereas takeover time and quality as three multi-classes). Finally, we built
DNN-based predictive models for each aspect of takeover behaviour. DeepTake takeover
predictions can potentially enable the vehicle autonomy to adjust the timely initiation of
TORs to match drivers’ needs and ultimately improve safety.
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Figure 1 - DeepTake uses data from multiple sources (pre-driving survey, vehicle data, NDRTs information, and
driver biometrics) and feeds the pre-processed extracted features into deep neural network models for the
prediction of takeover intention, time and quality.
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Below, we discuss each aforementioned step used in developing DeepTake framework.

1. Data collection: we collect multimodal data such as driver biometrics, pre-driving
surveys, types of engagement in NDRTs, and vehicle data. Collecting multimodal data
copes with the main drawback and inability to provide the underlying complicated state
of the driver. As driving is a dynamic task and could be impacted by internal and external
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factors, multiple physiological data streams were used. However, DeepTake can be
adjusted to fit the data entry.

2. Pre-processing: the collected multimodal data are pre-processed followed by
segmentation and feature extraction. Due to sensitiveness of physiological wearables,
intensive pre-processing should be applied to remove motion artifacts and extract
meaningful information. The extracted features are then labelled based on the belonging
to takeover behaviour class.

3. Labelling: DeepTake tends to cover multiple aspects of takeover behaviour to provide
more reliable outcomes. We define each aspect of takeover behaviour as a multi-class
classification problem (i.e. takeover intention as a binary class whereas takeover time
and quality as three multi-classes). Thus, we labelled takeover time as the period from
the moment the takeover request alarm is triggered to the moment a participant initiates
regaining control by pressing the two embedded buttons on the steering. This period
defines the takeover time for each participant which categorised as Low, Medium, and
High. In addition, we consider a motivating scenario where the driver needs to take over
control of the vehicle and swerve away from an obstacle blocking the same lane;
meanwhile, the vehicle should not deviate too much from the current lane, risking
crashing into nearby traffic. Thus, takeover quality (P) was labelled as the lateral
deviation from the current lane. we label the feature vectors into three classes of
takeover quality: “low” or staying in a lane when P<3.5m, “medium” or manoeuvre the
obstacle but too much deviations when 7m < P £ 10m, or “high” or manoeuvre safely
and one lane deviates when 3.5< P <7m.

4. Modeling: DeepTake utilises a feed-forward deep neural network (DNN) with a mini-
batch stochastic gradient descent. The DNN model architecture begins with an input
layer to match the input features, and each layer receives the input values from the prior
layer and outputs to the next one. Although we used three classes of takeover time and
quality, the output layer of DNN model can be customised for the multi-class
classification. In fact, we also demonstrated the capability of DeepTake in predicting 5-
class takeover time. We evaluate the DNN-model performance against multiple state-of-
art models.

5. Evaluation metrics: There are a number of potential methods to address reliability of the
models. Each of these methods shows a different aspect of the model. We evaluate the
performance of DeepTake framework by multiple metrics. Applying different metrics
reflect the goodness of the proposed model in different aspects. We first apply 10-fold
cross-validation on training data to evaluate the performance of selected features in the
prediction of driver takeover intention, time and quality. We then compared the
proposed model against 6 other models using Receiver Operating Characteristic (ROC),
and weighted F1 scores. We finally use the confusion matrix to further illustrate the
summary of DeepTake’s performance on the distinction of takeover intention, time, and
quality per class.

Driving scenarios: An experiment was conducted to identify the link between the captured
data and takeover behaviour. The driving scenarios comprised a four-lane rural highway,
with various trees and houses placed alongside the roadway. We designed five
representative situations where the AVs may need to prompt a TOR to the driver, including
novel and unfamiliar incidents that appear on the same lane. Figure 2 displays an example



of a takeover situation used in our study. The designed unplanned takeovers let participants
react more naturally to what they would normally do in AVs, participants' reaction times are
in detectable categories. In other words, participants have no previous knowledge of
incident appearance, which might happen among other incidents requiring situational
awareness and decision-making.

Start Reading Incident
Browsing
i Conversation Tak : .
() 5 Arithmetic ake-over i Switch
= State  * : Control
£ e y < NDRT > ition - ¥ o .
[ C il I Transition : , Driving - NDRT »
z [ ! [«— RT — ! : t
— TOR
""" 2 . Automated
S <«— Automated Driving —— Manual Driving - Driving
T B SENrE T -
SO | S| oo oooo oo S e PP e
ne | 5 - a8 -2 _, M
B o o

Figure 2 - An example of a takeover situation used in the study

Means to address takeover readiness: We believe that our human-centred DeepTake
framework makes a step towards enabling a longer interaction with NDRTs for automated
driving. DeepTake provides a new approach to help the monitoring systems to constantly
observe and predict the driver's mental and physical status by which the automated system
can make optimal decisions and improve the safety and user experience in AVs. Specifically,
by integrating the DeepTake framework into the monitoring systems of AVs, the automated
system infers when the driver has the intention to takeover through multiple sensor
streams. Once the system confirms a strong possibility of takeover intention, it can adapt its
driving behaviour to match the driver's needs for acceptable and safe takeover time and
quality. Therefore, a receiver of TOR can be ascertained as having the capability to take over
properly, otherwise, the system would have allowed the continued engagement in NDRT or
warned about it. Thus, integration of DeepTake into the future design of AVs facilitates the
human and system interaction to be more natural, efficient and safe. Since DeepTake
should be used in safety-critical applications, we further validated it to ensure that it meets
important safety requirements.

The DeepTake framework provides a promising new direction for modelling driver takeover
behaviour to lessen the effect of the general and fixed design of TORs which generally
considers homogeneous takeover time for all drivers. This is grounded in the design of
higher user acceptance of AVs and dynamic feedback. The information obtained by
DeepTake can be conveyed to passengers as well as other vehicles letting their movement
decisions have a higher degree of situational awareness.
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